Impulsive Boundary-value Problems for First-order Integro-differential Equations
نویسندگان
چکیده
This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,
منابع مشابه
Nonlinear boundary value problems for first order integro-differential equations with impulsive integral conditions∗
This paper is concerned with the nonlinear boundary value problems for first order integro-differential equations with impulsive integral conditions. By using of the method of lower and upper solutions coupled with the monotone iterative technique, we give conditions for the existence of extremal solutions.
متن کاملNonlinear Three-Point Boundary Value Problems for First Order Impulsive Integro-Differential Equations of Mixed Type
In this paper, the method of upper and lower solutions and monotone iterative technique are employed to the study of nonlinear three-point boundary value problems for a class of first order impulsive integro-differential equations of mixed type. Sufficient conditions for the existence of extreme solutions are obtained. Mathematics Subject Classification: 34B37
متن کاملOn boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملGlobal solutions for second order impulsive integro-differential equations in Banach spaces
This paper regards initial value problem for second order impulsive integro-differential equations as some nonlinear vector system. By means of the Mönch′s fixed point theorem, some existence theorems of solutions of the initial value problem are established. The results are newer than all of the previous ones because of the more general form compactness-type condition and the weaker restrictio...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کامل